Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2298051

ABSTRACT

COVID-19 vaccine efficacy (VE) has been observed to vary against antigenically distinct SARS-CoV-2 variants of concern (VoC). Here we report the final analysis of VE and safety from COV005: a phase 1b/2, multicenter, double-blind, randomized, placebo-controlled study of primary series AZD1222 (ChAdOx1 nCoV-19) vaccination in South African adults aged 18–65 years. South Africa's first, second, and third waves of SARS-CoV-2 infections were respectively driven by the ancestral SARS-CoV-2 virus (wild type, WT), and SARS-CoV-2 Beta and Delta VoCs. VE against asymptomatic and symptomatic infection was 90.6% for WT, 6.7% for Beta and 77.1% for Delta. No cases of severe COVID-19 were documented ahead of unblinding. Safety was consistent with the interim analysis, with no new safety concerns identified. Notably, South Africa's Delta wave occurred ≥ 9 months after primary series vaccination, suggesting that primary series AZD1222 vaccination offers a good durability of protection, potentially due to an anamnestic response. Clinical trial identifier: CT.gov NCT04444674

2.
Clin Infect Dis ; 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-2231966

ABSTRACT

BACKGROUND: In South Africa, 19% of the adult population are living with HIV (LWH). Few data on the influence of HIV on SARS-CoV-2 household transmission are available. METHODS: We performed a case-ascertained, prospective household transmission study of symptomatic index SARS-CoV-2 cases LWH and HIV-uninfected adults and their contacts in South Africa, October 2020 to September 2021. Households were followed up thrice weekly for 6 weeks to collect nasal swabs for SARS-CoV-2 testing. We estimated household cumulative infection risk (HCIR) and duration of SARS-CoV-2 positivity (at cycle threshold value <30 as proxy for high viral load). RESULTS: We recruited 131 index cases and 457 household contacts. HCIR was 59% (220/373); not differing by index HIV status (60% [51/85] in cases LWH vs 58% [163/279] in HIV-uninfected cases, OR 1.0, 95%CI 0.4-2.3). HCIR increased with index case age (35-59 years: aOR 3.4 95%CI 1.5-7.8 and ≥60 years: aOR 3.1, 95%CI 1.0-10.1) compared to 18-34 years, and contacts' age, 13-17 years (aOR 7.1, 95%CI 1.5-33.9) and 18-34 years (aOR 4.4, 95%CI 1.0-18.4) compared to <5 years. Mean positivity duration at high viral load was 7 days (range 2-17), with longer positivity in cases LWH (aHR 0.4, 95%CI 0.1-0.9). CONCLUSIONS: Index HIV status was not associated with higher HCIR, but cases LWH had longer positivity duration at high viral load. Adults aged >35 years were more likely to transmit, individuals aged 13-34 to acquire SARS-CoV-2 in the household. As HIV infection may increase transmission, health services must maintain HIV testing and antiretroviral therapy initiation.

3.
Sci Rep ; 13(1): 1222, 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2212023

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern (VOC) and its sub-lineages (including BA.2, BA.4, BA.5, BA.2.12.1) contain spike mutations that confer high level resistance to neutralizing antibodies induced by vaccination with ancestral spike or infection with previously circulating variants. The NVX-CoV2373 vaccine, a protein nanoparticle vaccine containing the ancestral spike sequence, has value in countries with constrained cold-chain requirements. Here we report neutralizing titers following two or three doses of NVX-CoV2373. We show that after two doses, Omicron sub-lineages BA.1 and BA.4/BA.5 were resistant to neutralization by 72% (21/29) and 59% (17/29) of samples respectively. However, after a third dose of NVX-CoV2373, we observed high titers against Omicron BA.1 (GMT: 1,197) and BA.4/BA.5 (GMT: 582), with responses similar in magnitude to those triggered by three doses of an mRNA vaccine. These data are of particular relevance as BA.4/BA.5 is dominating in multiple locations, and highlight the potential utility of the NVX-CoV2373 vaccine as a booster in resource-limited environments.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Neutralizing , Mutation , Antibodies, Viral
4.
Nat Commun ; 14(1): 246, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2185834

ABSTRACT

South Africa was among the first countries to detect the SARS-CoV-2 Omicron variant. However, the size of its Omicron BA.1 and BA.2 subvariants (BA.1/2) wave remains poorly understood. We analyzed sequential serum samples collected through a prospective cohort study before, during, and after the Omicron BA.1/2 wave to infer infection rates and monitor changes in the immune histories of participants over time. We found that the Omicron BA.1/2 wave infected more than half of the cohort population, with reinfections and vaccine breakthroughs accounting for > 60% of all infections in both rural and urban sites. After the Omicron BA.1/2 wave, we found few (< 6%) remained naïve to SARS-CoV-2 and the population immunologic landscape is fragmented with diverse infection/immunization histories. Prior infection with the ancestral strain, Beta, and Delta variants provided 13%, 34%, and 51% protection against Omicron BA.1/2 infection, respectively. Hybrid immunity and repeated prior infections reduced the risks of Omicron BA.1/2 infection by 60% and 85% respectively. Our study sheds light on a rapidly shifting landscape of population immunity in the Omicron era and provides context for anticipating the long-term circulation of SARS-CoV-2 in populations no longer naïve to the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , South Africa/epidemiology , COVID-19/epidemiology , Prospective Studies
5.
Open Forum Infect Dis ; 9(12): ofac578, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2190075

ABSTRACT

Background: Data on risk factors for coronavirus disease 2019 (COVID-19)-associated hospitalization and mortality in high human immunodeficiency virus (HIV) prevalence settings are limited. Methods: Using existing syndromic surveillance programs for influenza-like-illness and severe respiratory illness at sentinel sites in South Africa, we identified factors associated with COVID-19 hospitalization and mortality. Results: From April 2020 through March 2022, severe acute respiratory syndrome coronavirus 2 was detected in 24.0% (660 of 2746) of outpatient and 32.5% (2282 of 7025) of inpatient cases. Factors associated with COVID-19-associated hospitalization included the following: older age (25-44 [adjusted odds ratio {aOR}= 1.8, 95% confidence interval (CI) = 1.1-2.9], 45-64 [aOR = 6.8, 95% CI = 4.2-11.0] and ≥65 years [aOR = 26.6, 95% CI = 14.4-49.1] vs 15-24 years); black race (aOR, 3.3; 95% CI, 2.2-5.0); obesity (aOR, 2.3; 95% CI, 1.4-3.9); asthma (aOR, 3.5; 95% CI, 1.4-8.9); diabetes mellitus (aOR, 5.3; 95% CI, 3.1-9.3); HIV with CD4 ≥200/mm3 (aOR, 1.5; 95% CI, 1.1-2.2) and CD4 <200/mm3 (aOR, 10.5; 95% CI, 5.1-21.6) or tuberculosis (aOR, 12.8; 95% CI, 2.8-58.5). Infection with Beta (aOR, 0.5; 95% CI, .3-.7) vs Delta variant and being fully vaccinated (aOR, 0.1; 95% CI, .1-.3) were less associated with COVID-19 hospitalization. In-hospital mortality was increased in older age (45-64 years [aOR, 2.2; 95% CI, 1.6-3.2] and ≥65 years [aOR, 4.0; 95% CI, 2.8-5.8] vs 25-44 years) and male sex (aOR, 1.3; 95% CI, 1.0-1.6) and was lower in Omicron-infected (aOR, 0.3; 95% CI, .2-.6) vs Delta-infected individuals. Conclusions: Active syndromic surveillance encompassing clinical, laboratory, and genomic data identified setting-specific risk factors associated with COVID-19 severity that will inform prioritization of COVID-19 vaccine distribution. Elderly people with tuberculosis or people with HIV, especially severely immunosuppressed, should be prioritized for vaccination.

6.
Immunol Rev ; 310(1): 61-75, 2022 09.
Article in English | MEDLINE | ID: covidwho-2097773

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has shifted our paradigms about B cell immunity and the goals of vaccination for respiratory viruses. The development of population immunity, through responses directed to highly immunogenic regions of this virus, has been a strong driving force in the emergence of progressively mutated variants. This review highlights how the strength of the existing global virology and immunology networks built for HIV vaccine research enabled rapid adaptation of techniques, assays, and skill sets, to expeditiously respond to the SARS-CoV-2 pandemic. Allying real-time genomic surveillance to immunological platforms enabled the characterization of immune responses elicited by infection with distinct variants, in sequential epidemic waves, as well as studies of vaccination and hybrid immunity (combination of infection- and vaccination-induced immunity). These studies have shown that consecutive variants of concern have steadily diminished the ability of vaccines to prevent infection, but that increasing levels of hybrid immunity result in higher frequencies of cross-reactive responses. Ultimately, this rapid pivot from HIV to SARS-CoV-2 enabled a depth of understanding of the SARS-CoV-2 antigenic vulnerabilities as population immunity expanded and diversified, providing key insights for future responses to the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , HIV Infections , Viral Vaccines , Antibodies, Viral , Humans , SARS-CoV-2 , South Africa , Vaccination
7.
Int J Infect Dis ; 125: 241-249, 2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2095476

ABSTRACT

OBJECTIVES: After South Africa's second wave of COVID-19, this study estimated the SARS-CoV-2 seroprevalence among pregnant women in inner-city Johannesburg, South Africa. METHODS: In this cross-sectional survey, 500 pregnant women who were non-COVID-19-vaccinated (aged ≥12 years) were enrolled, and demographic and clinical data were collected. Serum samples were tested using the Wantai SARS-CoV-2 spike antibody enzyme-linked immunosorbent assay and Roche Elecsys® anti-SARS-CoV-2 nucleocapsid antibody assays. Seropositivity was defined as SARS-CoV-2 antibodies on either (primary) or both (secondary) assays. Univariate Poisson regression assessed risk factors associated with seropositivity. RESULTS: The median age was 27.4 years, and HIV prevalence was 26.7%. SARS-CoV-2 seroprevalence was 64.0% (95% confidence interval [CI]: 59.6-68.2%) on the primary and 54% (95% CI: 49.5-58.4%) on the secondary measure. Most (96.6%) women who were SARS-CoV-2-seropositive reported no symptoms. On the Roche assay, we detected lower seroprevalence among women living with HIV than women without HIV (48.9% vs 61.7%, P-value = 0.018), and especially low levels among women living with HIV with a clusters of differentiation 4 <350 cells/ml compared with women without immune suppression (22.2% vs 56.4%, prevalence rate ratio = 0.4; 95% CI: 0.2-0.9; P-value = 0.046). CONCLUSION: Pregnant women attending routine antenatal care had a high SARS-CoV-2 seroprevalence after the second wave in South Africa, and most had asymptomatic infections. Seroprevalence surveys in pregnant women present a feasible method of monitoring the course of the pandemic over time.

8.
Nat Commun ; 13(1): 5860, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-2050384

ABSTRACT

Omicron lineages BA.4 and BA.5 drove a fifth wave of COVID-19 cases in South Africa. Here, we use the presence/absence of the S-gene target as a proxy for SARS-CoV-2 variant/lineage for infections diagnosed using the TaqPath PCR assay between 1 October 2021 and 26 April 2022. We link national COVID-19 individual-level data including case, laboratory test and hospitalisation data. We assess severity using multivariable logistic regression comparing the risk of hospitalisation and risk of severe disease, once hospitalised, for Delta, BA.1, BA.2 and BA.4/BA.5 infections. After controlling for factors associated with hospitalisation and severe outcome respectively, BA.4/BA.5-infected individuals had a similar odds of hospitalisation (aOR 1.24, 95% CI 0.98-1.55) and severe outcome (aOR 0.72, 95% CI 0.41-1.26) compared to BA.1-infected individuals. Newly emerged Omicron lineages BA.4/BA.5 showed similar severity to the BA.1 lineage and continued to show reduced clinical severity compared to the Delta variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , South Africa/epidemiology
9.
Clin Infect Dis ; 75(1): e57-e68, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2008554

ABSTRACT

BACKGROUND: Seroprevalence studies are important for quantifying the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in resource-constrained countries. METHODS: We conducted a cross-sectional household survey spanning the second pandemic wave (November 2020 to April 2021) in 3 communities. Blood was collected for SARS-CoV-2 antibody (2 enzyme-linked immunosorbent assays targeting spike and nucleocapsid) and human immunodeficiency virus (HIV) testing. An individual was considered seropositive if testing positive on ≥1 assay. Factors associated with infection, and the age-standardized infection case detection rate, infection hospitalization rate, and infection fatality rate were calculated. RESULTS: Overall, 7959 participants were enrolled, with a median age of 34 years and an HIV prevalence of 22.7%. SARS-CoV-2 seroprevalence was 45.2% (95% confidence interval 43.7%-46.7%) and increased from 26.9% among individuals enrolled in December 2020 to 47.1% among those enrolled in April 2021. On multivariable analysis, seropositivity was associated with age, sex, race, being overweight/obese, having respiratory symptoms, and low socioeconomic status. Persons living with HIV with high viral load were less likely to be seropositive than HIV-uninfected individuals. The site-specific infection case detection rate, infection hospitalization rate, and infection fatality rate ranged across sites from 4.4% to 8.2%, 1.2% to 2.5%, and 0.3% to 0.6%, respectively. CONCLUSIONS: South Africa has experienced a large burden of SARS-CoV-2 infections, with <10% of infections diagnosed. Lower seroprevalence among persons living with HIV who are not virally suppressed, likely as a result of inadequate antibody production, highlights the need to prioritize this group for intervention.


Subject(s)
COVID-19 , HIV Infections , Adult , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , HIV , HIV Infections/complications , HIV Infections/epidemiology , Humans , SARS-CoV-2 , Seroepidemiologic Studies , South Africa/epidemiology
10.
Nat Med ; 28(9): 1785-1790, 2022 09.
Article in English | MEDLINE | ID: covidwho-1908212

ABSTRACT

Three lineages (BA.1, BA.2 and BA.3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern predominantly drove South Africa's fourth Coronavirus Disease 2019 (COVID-19) wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and similar to BA.2 except for the addition of 69-70 deletion (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild-type amino acid at Q493. The two lineages differ only outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimated growth advantages for BA.4 and BA.5 of 0.08 (95% confidence interval (CI): 0.08-0.09) and 0.10 (95% CI: 0.09-0.11) per day, respectively, over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acids , Animals , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics
12.
Sci Transl Med ; 14(659): eabo7081, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1874494

ABSTRACT

Understanding the build-up of immunity with successive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the epidemiological conditions that favor rapidly expanding epidemics will help facilitate future pandemic control. We analyzed high-resolution infection and serology data from two longitudinal household cohorts in South Africa to reveal high cumulative infection rates and durable cross-protective immunity conferred by prior infection in the pre-Omicron era. Building on the history of past exposures to different SARS-CoV-2 variants and vaccination in the cohort most representative of South Africa's high urbanization rate, we used mathematical models to explore the fitness advantage of the Omicron variant and its epidemic trajectory. Modeling suggests that the Omicron wave likely infected a large fraction (44 to 81%) of the population, leaving a complex landscape of population immunity primed and boosted with antigenically distinct variants. We project that future SARS-CoV-2 resurgences are likely under a range of scenarios of viral characteristics, population contacts, and residual cross-protection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , South Africa/epidemiology
13.
Nature ; 607(7918): 356-359, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830078

ABSTRACT

The extent to which Omicron infection1-9, with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3-9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19-27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Ad26COVS1/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cross Protection/immunology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
14.
Clin Infect Dis ; 75(1): e144-e156, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1821725

ABSTRACT

BACKGROUND: We assessed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA shedding duration and magnitude among persons living with human immunodeficiency virus (HIV, PLHIV). METHODS: From May through December 2020, we conducted a prospective cohort study at 20 hospitals in South Africa. Adults hospitalized with symptomatic coronavirus disease 2019 (COVID-19) were enrolled and followed every 2 days with nasopharyngeal/oropharyngeal (NP/OP) swabs until documentation of cessation of SARS-CoV-2 shedding (2 consecutive negative NP/OP swabs). Real-time reverse transcription-polymerase chain reaction testing for SARS-CoV-2 was performed, and cycle-threshold (Ct) values < 30 were considered a proxy for high SARS-CoV-2 viral load. Factors associated with prolonged shedding were assessed using accelerated time-failure Weibull regression models. RESULTS: Of 2175 COVID-19 patients screened, 300 were enrolled, and 257 individuals (155 HIV-uninfected and 102 PLHIV) had > 1 swabbing visit (median 5 visits [range 2-21]). Median time to cessation of shedding was 13 days (interquartile range [IQR] 6-25) and did not differ significantly by HIV infection. Among a subset of 94 patients (41 PLHIV and 53 HIV-uninfected) with initial respiratory sample Ct-value < 30, median time of shedding at high SARS-CoV-2 viral load was 8 days (IQR 4-17). This was significantly longer in PLHIV with CD4 count < 200 cells/µL, compared to HIV-uninfected persons (median 27 days [IQR 8-43] vs 7 days [IQR 4-13]; adjusted hazard ratio [aHR] 0.14, 95% confidence interval [CI] .07-.28, P < .001), as well as in unsuppressed-HIV versus HIV-uninfected persons. CONCLUSIONS: Although SARS-CoV-2 shedding duration did not differ significantly by HIV infection, among a subset with high initial SARS-CoV-2 viral loads, immunocompromised PLHIV shed SARS-CoV-2 at high viral loads for longer than HIV-uninfected persons. Better HIV control may potentially decrease transmission time of SARS-CoV-2.


Subject(s)
COVID-19 , HIV Infections , Adult , HIV , HIV Infections/complications , HIV Infections/epidemiology , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , South Africa/epidemiology , Viral Load , Virus Shedding
16.
Nat Commun ; 13(1): 1976, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1783980

ABSTRACT

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The initial C.1.2 detection is associated with a high substitution rate, and includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 variants of concern or variants of interest. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta show high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
17.
Emerg Infect Dis ; 28(5): 1055-1058, 2022 05.
Article in English | MEDLINE | ID: covidwho-1760190

ABSTRACT

By November 2021, after the third wave of severe acute respiratory syndrome coronavirus 2 infections in South Africa, seroprevalence was 60% in a rural community and 70% in an urban community. High seroprevalence before the Omicron variant emerged may have contributed to reduced illness severity observed in the fourth wave.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Seroepidemiologic Studies , South Africa/epidemiology
18.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: covidwho-1758789

ABSTRACT

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
Lancet Infect Dis ; 22(6): 821-834, 2022 06.
Article in English | MEDLINE | ID: covidwho-1740327

ABSTRACT

BACKGROUND: By August, 2021, South Africa had been affected by three waves of SARS-CoV-2; the second associated with the beta variant and the third with the delta variant. Data on SARS-CoV-2 burden, transmission, and asymptomatic infections from Africa are scarce. We aimed to evaluate SARS-CoV-2 burden and transmission in one rural and one urban community in South Africa. METHODS: We conducted a prospective cohort study of households in Agincourt, Mpumalanga province (rural site) and Klerksdorp, North West province (urban site) from July, 2020 to August, 2021. We randomly selected households for the rural site from a health and sociodemographic surveillance system and for the urban site using GPS coordinates. Households with more than two members and where at least 75% of members consented to participate were eligible. Midturbinate nasal swabs were collected twice a week from household members irrespective of symptoms and tested for SARS-CoV-2 using real-time RT-PCR (RT-rtPCR). Serum was collected every 2 months and tested for anti-SARS-CoV-2 antibodies. Main outcomes were the cumulative incidence of SARS-CoV-2 infection, frequency of reinfection, symptomatic fraction (percent of infected individuals with ≥1 symptom), the duration of viral RNA shedding (number of days of SARS-CoV-2 RT-rtPCR positivity), and the household cumulative infection risk (HCIR; number of infected household contacts divided by the number of susceptible household members). FINDINGS: 222 households (114 at the rural site and 108 at the urban site), and 1200 household members (643 at the rural site and 557 at the urban site) were included in the analysis. For 115 759 nasal specimens from 1200 household members (follow-up 92·5%), 1976 (1·7%) were SARS-CoV-2-positive on RT-rtPCR. By RT-rtPCR and serology combined, 749 of 1200 individuals (62·4% [95% CI 58·1-66·4]) had at least one SARS-CoV-2 infection episode, and 87 of 749 (11·6% [9·4-14·2]) were reinfected. The mean infection episode duration was 11·6 days (SD 9·0; range 4-137). Of 662 RT-rtPCR-confirmed episodes (>14 days after the start of follow-up) with available data, 97 (14·7% [11·9-17·9]) were symptomatic with at least one symptom (in individuals aged <19 years, 28 [7·5%] of 373 episodes symptomatic; in individuals aged ≥19 years, 69 [23·9%] of 289 episodes symptomatic). Among 222 households, 200 (90·1% [85·3-93·7]) had at least one SARS-CoV-2-positive individual on RT-rtPCR or serology. HCIR overall was 23·9% (195 of 817 susceptible household members infected [95% CI 19·8-28·4]). HCIR was 23·3% (20 of 86) for symptomatic index cases and 23·9% (175 of 731) for asymptomatic index cases (univariate odds ratio [OR] 1·0 [95% CI 0·5-2·0]). On multivariable analysis, accounting for age and sex, low minimum cycle threshold value (≤30 vs >30) of the index case (OR 5·3 [2·3-12·4]) and beta and delta variant infection (vs Wuhan-Hu-1, OR 3·3 [1·4-8·2] and 10·4 [4·1-26·7], respectively) were associated with increased HCIR. People living with HIV who were not virally supressed (≥400 viral load copies per mL) were more likely to develop symptomatic illness when infected with SAR-CoV-2 (OR 3·3 [1·3-8·4]), and shed SARS-CoV-2 for longer (hazard ratio 0·4 [95% CI 0·3-0·6]) compared with HIV-uninfected individuals. INTERPRETATION: In this study, 565 (85·3%) SARS-CoV-2 infections were asymptomatic and index case symptom status did not affect HCIR, suggesting a limited role for control measures targeting symptomatic individuals. Increased household transmission of beta and delta variants was likely to have contributed to successive waves of SARS-CoV-2 infection, with more than 60% of individuals infected by the end of follow-up. FUNDING: US CDC, South Africa National Institute for Communicable Diseases, and Wellcome Trust.


Subject(s)
COVID-19 , HIV Infections , COVID-19/epidemiology , Cohort Studies , Disease Susceptibility , Humans , Incidence , Prospective Studies , Reinfection , SARS-CoV-2 , South Africa/epidemiology
20.
Sci Rep ; 12(1): 2552, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692551

ABSTRACT

There is a need for effective therapy for COVID-19 pneumonia. Convalescent plasma has antiviral activity and early observational studies suggested benefit in reducing COVID-19 severity. We investigated the safety and efficacy of convalescent plasma in hospitalized patients with COVID-19 in a population with a high HIV prevalence and where few therapeutic options were available. We performed a double-blinded, multicenter, randomized controlled trial in one private and three public sector hospitals in South Africa. Adult participants with COVID-19 pneumonia requiring non-invasive oxygen were randomized 1:1 to receive a single transfusion of 200 mL of either convalescent plasma or 0.9% saline solution. The primary outcome measure was hospital discharge and/or improvement of ≥ 2 points on the World Health Organisation Blueprint Ordinal Scale for Clinical Improvement by day 28 of enrolment. The trial was stopped early for futility by the Data and Safety Monitoring Board. 103 participants, including 21 HIV positive individuals, were randomized at the time of premature trial termination: 52 in the convalescent plasma and 51 in the placebo group. The primary outcome occurred in 31 participants in the convalescent plasma group and and 32 participants in the placebo group (relative risk 1.03 (95% CI 0.77 to 1.38). Two grade 1 transfusion-related adverse events occurred. Participants who improved clinically received convalescent plasma with a higher median anti-SARS-CoV-2 neutralizing antibody titre compared with those who did not (298 versus 205 AU/mL). Our study contributes additional evidence for recommendations against the use of convalescent plasma for COVID-19 pneumonia. Safety and feasibility in this population supports future investigation for other indications.


Subject(s)
COVID-19/therapy , Adult , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Double-Blind Method , Female , HIV Infections/complications , Hospitals, Public , Humans , Immunization, Passive , Kaplan-Meier Estimate , Male , Middle Aged , Placebo Effect , SARS-CoV-2/isolation & purification , Severity of Illness Index , South Africa , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL